期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:35
页码:8665-8670
DOI:10.1073/pnas.1802831115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Fracture fundamentally limits the structural stability of macroscopic and microscopic matter, from beams and bones to microtubules and nanotubes. Despite substantial recent experimental and theoretical progress, fracture control continues to present profound practical and theoretical challenges. While bending-induced fracture of elongated rod-like objects has been intensely studied, the effects of twist and quench dynamics have yet to be explored systematically. Here, we show how twist and quench protocols may be used to control such fracture processes, by revisiting Feynman’s observation that dry spaghetti typically breaks into three or more pieces when exposed to large pure bending stresses. Combining theory and experiment, we demonstrate controlled binary fracture of brittle elastic rods for two distinct protocols based on twisting and nonadiabatic quenching. Our experimental data for twist-controlled fracture agree quantitatively with a theoretically predicted phase diagram, and we establish asymptotic scaling relations for quenched fracture. Due to their general character, these results are expected to apply to torsional and kinetic fracture processes in a wide range of systems.