期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:33
页码:8311-8315
DOI:10.1073/pnas.1803599115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Anomalous surface states with Fermi arcs are commonly considered to be a fingerprint of Dirac semimetals (DSMs). In contrast to Weyl semimetals, however, Fermi arcs of DSMs are not topologically protected. Using first-principles calculations, we predict that β-cuprous iodide (β-CuI) is a peculiar DSM whose surface states form closed Fermi pockets instead of Fermi arcs. In such a fermiological Dirac semimetal, the deformation mechanism from Fermi arcs to Fermi pockets stems from a large cubic term preserving all crystal symmetries and from the small energy difference between the surface and bulk Dirac points. The cubic term in β-CuI, usually negligible in prototypical DSMs, becomes relevant because of the particular crystal structure. As such, we establish a concrete material example manifesting the lack of topological protection for surface Fermi arcs in DSMs.