首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Synaptotagmin oligomerization is essential for calcium control of regulated exocytosis
  • 作者:Oscar D. Bello ; Ouardane Jouannot ; Arunima Chaudhuri
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:32
  • 页码:E7624-E7631
  • DOI:10.1073/pnas.1808792115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Regulated exocytosis, which underlies many intercellular signaling events, is a tightly controlled process often triggered by calcium ion(s) (Ca2+). Despite considerable insight into the central components involved, namely, the core fusion machinery [soluble N -ethylmaleimide–sensitive factor attachment protein receptor (SNARE)] and the principal Ca2+ sensor [C2-domain proteins like synaptotagmin (Syt)], the molecular mechanism of Ca2+-dependent release has been unclear. Here, we report that the Ca2+-sensitive oligomers of Syt1, a conserved structural feature among several C2-domain proteins, play a critical role in orchestrating Ca2+-coupled vesicular release. This follows from pHluorin-based imaging of single-vesicle exocytosis in pheochromocytoma (PC12) cells showing that selective disruption of Syt1 oligomerization using a structure-directed mutation (F349A) dramatically increases the normally low levels of constitutive exocytosis to effectively occlude Ca2+-stimulated release. We propose a parsimonious model whereby Ca2+-sensitive oligomers of Syt (or a similar C2-domain protein) assembled at the site of docking physically block spontaneous fusion until disrupted by Ca2+. Our data further suggest Ca2+-coupled vesicular release is triggered by removal of the inhibition, rather than by direct activation of the fusion machinery.
  • 关键词:regulated exocytosis ; synaptotagmin ; SNARE protein ; calcium ; PC12 cells
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有