首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Data-driven body–machine interface for the accurate control of drones
  • 本地全文:下载
  • 作者:Jenifer Miehlbradt ; Alexandre Cherpillod ; Stefano Mintchev
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:31
  • 页码:7913-7918
  • DOI:10.1073/pnas.1718648115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The accurate teleoperation of robotic devices requires simple, yet intuitive and reliable control interfaces. However, current human–machine interfaces (HMIs) often fail to fulfill these characteristics, leading to systems requiring an intensive practice to reach a sufficient operation expertise. Here, we present a systematic methodology to identify the spontaneous gesture-based interaction strategies of naive individuals with a distant device, and to exploit this information to develop a data-driven body–machine interface (BoMI) to efficiently control this device. We applied this approach to the specific case of drone steering and derived a simple control method relying on upper-body motion. The identified BoMI allowed participants with no prior experience to rapidly master the control of both simulated and real drones, outperforming joystick users, and comparing with the control ability reached by participants using the bird-like flight simulator Birdly.
  • 关键词:human–machine interface ; body–machine interface ; immersive drone control ; teleoperation ; motor control
国家哲学社会科学文献中心版权所有