期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:31
页码:E7379-E7388
DOI:10.1073/pnas.1802343115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination. Genome editing is guided by complementary homology arms and is highly accurate and seamless, with no evidence of on-target mutations, including insertion/deletions or inclusion of AAV inverted terminal repeats. Efficient genome editing was demonstrated at different loci within the human genome, including a safe harbor locus, AAVS1, and the therapeutically relevant IL2RG gene, and at the murine Rosa26 locus. HSC-derived AAV vector (AAVHSC)-mediated genome editing was robust in primary human cells, including CD34+ cells, adult liver, hepatic endothelial cells, and myocytes. Importantly, high-efficiency gene editing was achieved in vivo upon a single i.v. injection of AAVHSC editing vectors in mice. Thus, clade F AAV-mediated genome editing represents a promising, highly efficient, precise, single-component approach that enables the development of therapeutic in vivo genome editing for the treatment of a multitude of human gene-based diseases.
关键词:adeno-associated virus ; genome editing ; homologous recombination ; hematopoietic stem cells ; in vivo genome editing