期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:31
页码:8031-8036
DOI:10.1073/pnas.1804130115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Ever since Darwin postulated that the tip of the root is sensitive to moisture differences and that it “transmits an influence to the upper adjoining part, which bends towards the source of moisture” [Darwin C, Darwin F (1880) The Power of Movement in Plants , pp 572–574], the signal underlying this tropic response has remained elusive. Using the FRET-based Cameleon Ca2+ sensor in planta , we show that a water potential gradient applied across the root tip generates a slow, long-distance asymmetric cytosolic Ca2+ signal in the phloem, which peaks at the elongation zone, where it is dispersed laterally and asymmetrically to peripheral cells, where cell elongation occurs. In addition, the MIZ1 protein, whose biochemical function is unknown but is required for root curvature toward water, is indispensable for generating the slow, long-distance Ca2+ signal. Furthermore, biochemical and genetic manipulations that elevate cytosolic Ca2+ levels, including mutants of the endoplasmic reticulum (ER) Ca2+-ATPase isoform ECA1, enhance root curvature toward water. Finally, coimmunoprecipitation of plant proteins and functional complementation assays in yeast cells revealed that MIZ1 directly binds to ECA1 and inhibits its activity. We suggest that the inhibition of ECA1 by MIZ1 changes the balance between cytosolic Ca2+ influx and efflux and generates the cytosolic Ca2+ signal required for water tracking.