期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:29
页码:E6690-E6696
DOI:10.1073/pnas.1722681115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Low-dimensional objects such as molecular strands, ladders, and sheets have intrinsic features that affect their propensity to fold into 3D objects. Understanding this relationship remains a challenge for de novo design of functional structures. Using molecular dynamics simulations, we investigate the refolding of the 24 possible 2D unfoldings (“nets”) of the three simplest Platonic shapes and demonstrate that attributes of a net’s topology—net compactness and leaves on the cutting graph—correlate with thermodynamic folding propensity. To explain these correlations we exhaustively enumerate the pathways followed by nets during folding and identify a crossover temperature