首页    期刊浏览 2024年09月03日 星期二
登录注册

文章基本信息

  • 标题:Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength
  • 本地全文:下载
  • 作者:Muxin Yang ; Dingshun Yan ; Fuping Yuan
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:28
  • 页码:7224-7229
  • DOI:10.1073/pnas.1807817115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Ductility, i.e., uniform strain achievable in uniaxial tension, diminishes for materials with very high yield strength. Even for the CrCoNi medium-entropy alloy (MEA), which has a simple face-centered cubic (FCC) structure that would bode well for high ductility, the fine grains processed to achieve gigapascal strength exhaust the strain hardening ability such that, after yielding, the uniform tensile strain is as low as ∼2%. Here we purposely deploy, in this MEA, a three-level heterogeneous grain structure (HGS) with grain sizes spanning the nanometer to micrometer range, imparting a high yield strength well in excess of 1 GPa. This heterogeneity results from this alloy’s low stacking fault energy, which facilitates corner twins in recrystallization and stores deformation twins and stacking faults during tensile straining. After yielding, the elastoplastic transition through load transfer and strain partitioning among grains of different sizes leads to an upturn of the strain hardening rate, and, upon further tensile straining at room temperature, corner twins evolve into nanograins. This dynamically reinforced HGS leads to a sustainable strain hardening rate, a record-wide hysteresis loop in load−unload−reload stress−strain curve and hence high back stresses, and, consequently, a uniform tensile strain of 22%. As such, this HGS achieves, in a single-phase FCC alloy, a strength−ductility combination that would normally require heterogeneous microstructures such as in dual-phase steels.
  • 关键词:heterogeneous grain structure ; ductility ; medium-entropy alloy ; back stress hardening
国家哲学社会科学文献中心版权所有