期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:25
页码:6422-6427
DOI:10.1073/pnas.1802096115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Virtually all studies reporting deepening with increasing size or age by fishes involve commercially harvested species. Studies of North Sea plaice in the early 1900s first documented this phenomenon (named Heincke’s law); it occurred at a time of intensive harvesting and rapid technological changes in fishing methods. The possibility that this deepening might be the result of harvesting has never been evaluated. Instead, age- or size-related deepening have been credited to interactions between density-dependent food resources and density-independent environmental factors. Recently, time-dependent depth variations have been ascribed to ocean warming. We use a model, initialized from observations of Atlantic cod ( Gadus morhua ) on the eastern Scotian Shelf, where an age-dependent deepening of ∼60 m was observed, to assess the effect of size- and depth-selective exploitation on fish distribution. Exploitation restricted to the upper 80 m can account for ∼72% of the observed deepening; by extending exploitation to 120 m, all of the deepening can be accounted for. In the absence of fishing, the model indicated no age-related deepening. Observations of depth distributions of older cod during a moratorium on fishing supported this prediction; however, younger cod exhibited low-amplitude deepening (10–15 m) suggestive of an ontogenetic response. The implications of these findings are manifold, particularly as they relate to hypotheses advanced to explain the ecological and evolutionary basis for ontogenetic deepening and to recent calls for the adoption of evidence of species deepening as a biotic indicator or “footprint” of warming seas.