期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:25
页码:E5824-E5833
DOI:10.1073/pnas.1805802115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The mechanisms controlling the transcription of gene sets in specific regions of a plant embryo shortly after fertilization remain unknown. Previously, we showed that G564 mRNA, encoding a protein of unknown function, accumulates to high levels in the giant suspensor of both Scarlet Runner Bean (SRB) and Common Bean embryos, and a cis -regulatory module containing three unique DNA sequences, designated as the 10-bp, Region 2, and Fifth motifs, is required for G564 suspensor-specific transcription [Henry KF, et al. (2015) Plant Mol Biol 88:207–217; Kawashima T, et al. (2009) Proc Natl Acad Sci USA 106:3627–3632]. We tested the hypothesis that these motifs are also required for transcription of the SRB GA 20-oxidase gene, which encodes a gibberellic acid hormone biosynthesis enzyme and is coexpressed with G564 at a high level in giant bean suspensors. We used deletion and gain-of-function experiments in transgenic tobacco embryos to show that two GA 20-oxidase DNA regions are required for suspensor-specific transcription, one in the 5′ UTR (+119 to +205) and another in the 5′ upstream region (−341 to −316). Mutagenesis of sequences in these two regions determined that the cis -regulatory motifs required for G564 suspensor transcription are also required for GA 20-oxidase transcription within the suspensor, although the motif arrangement differs. Our results demonstrate the flexibility of motif positioning within a cis -regulatory module that activates gene transcription within giant bean suspensors and suggest that G564 and GA 20-oxidase comprise part of a suspensor gene regulatory network.