首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Optimization of Neuro-Fuzzy System Using Genetic Algorithm for Chromosome Classification
  • 作者:M. Sarosa ; A. S. Ahmad ; B. Riyanto
  • 期刊名称:Journal of ICT Research and Applications
  • 印刷版ISSN:2337-5787
  • 电子版ISSN:2338-5499
  • 出版年度:2007
  • 卷号:1
  • 期号:1
  • 页码:56-69
  • 语种:English
  • 出版社:Institut Teknologi Bandung
  • 其他摘要:Neuro-fuzzy system has been shown to provide a good performance on chromosome classification but does not offer a simple method to obtain the accurate parameter values required to yield the best recognition rate. This paper presents a neuro-fuzzy system where its parameters can be automatically adjusted using genetic algorithms. The approach combines the advantages of fuzzy logic theory, neural networks, and genetic algorithms. The structure consists of a four layer feed-forward neural network that uses a GBell membership function as the output function. The proposed methodology has been applied and tested on banded chromosome classification from the Copenhagen Chromosome Database. Simulation result showed that the proposed neuro-fuzzy system optimized by genetic algorithms offers advantages in setting the parameter values, improves the recognition rate significantly and decreases the training/testing time which makes genetic neuro-fuzzy system suitable for chromosome classification.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有