首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Isolation, screening and identification of the best selenium-reducing bacteria and study on the sorption mechanism
  • 作者:Fatemeh Yaghoobizadeh ; Mohammad Roayaei Ardakani ; Hossein Zolgharnein
  • 期刊名称:Environmental and Experimental Biology
  • 印刷版ISSN:1691-8088
  • 出版年度:2017
  • 卷号:15
  • 期号:3
  • 页码:161-171
  • DOI:10.22364/eeb.15.15
  • 出版社:University of Latvia
  • 摘要:Selenium is an essential dietary trace element. However, it is toxic at micro-molar concentrations. Natural sources and anthropogenic activities have resulted in raised levels of selenium. Methods of remediation of polluted areas include various physico-chemical techniques, which are expensive and are not effective to efficiently reduce metal and metalloid concentrations. Nevertheless, it is well known that a large number of microorganisms can aerobically reduce selenite or selenate to Se (0). For this reason, microorganisms could be potentially used for bioremediation of polluted sites, as they have developed broad-range resistance mechanisms, such as oxidation, reduction, volatilization and methylation which mediate the natural cycling of these oxyanions and cause biological transformation of selenium oxyanions from one form to another. Among available technologies bacterial reduction of selenate to elemental Se (Se 0) has potential because elemental selenium is insoluble and has the lowest toxicity for biological systems. Moreover, it can be removed by some techniques such as filtration. It is worth noting that isolation of selenate-reducing bacteria has been reported from many different environments. Therefore, the aims of this research were isolation and identification of selenate-resistant bacteria, which may be applied for bioremediation purposes. In the first stage, serial dilutions of samples were cultured on modified Luria-Bertani agar medium (plus 0.2 mM sodium selenate). In order to limit the number of isolated bacteria and to achieve to the most and best resistant isolates, resistance threshold was studied by minimum inhibitory concentration, minimum bactericidal concentration and disc diffusion methods at 32.5 to 1200 mM. Of the isolated bacteria, one isolate from more resistant bacteria was selected and used to perform comprehensive studies. Biosorption and metal removal efficiency of the best isolate were investigated using metabolically active and inactive biomasses (using autoclave and drying by oven). Identification was performed using morphological (e.g. microscopic shape and colony features on agar medium) and biochemical tests (e.g. catalase/oxidase activity, utilization of maltose/sucrose and urea) and molecular methods. Among the isolates, only one isolate had high resistance to selenate; it showed minimum inhibitory concentration and minimum bactericidal concentration equal to 1200 mM and >1200 mM, respectively. Biosorption studies indicated that among different treatment methods, resting cells treated by autoclaving have the highest biosorption capacity (1550.3 mg g–1) and metal removal efficiency (12.76%). Finally, the isolate was identified as a species of the Klebsiella genus. Overall, comparison of this study with other published work (especially reported results from Iranian studies) showed that this isolate has potential for industrial application on environment cleanup activities
  • 关键词:biosorption; isolation; microorganisms; resistance mechanism; selenate
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有