首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Entropy Based Mean Clustering: An Enhanced Clustering Approach
  • 作者:Jaya RamaKrishnaiah VV ; Ramch ; H Rao K
  • 期刊名称:Journal of Computer Science & Systems Biology
  • 印刷版ISSN:0974-7230
  • 出版年度:2012
  • 卷号:5
  • 期号:3
  • 页码:62-67
  • DOI:10.4172/jcsb.1000091
  • 出版社:OMICS Publishing Group
  • 摘要:Many applications of clustering require the use of normalized data, such as text data or mass spectra mining data. The K –Means Clustering Algorithm is one of the most widely used clustering algorithm which works on greedy approach. Major problems with the traditional K mean clustering is generation of empty clusters and more computations required to make the group of clusters. To overcome this problem we proposed an Algorithm namely Entropy Based Means Clustering Algorithm. The proposed Algorithm produces normalized cluster centers, hence highly useful for text data or massive data. The proposed algorithm shows better performance when compared with traditional K Mean Clustering Algorithm in mining data in terms of reducing time, seed predications and avoiding Empty Clusters.
  • 关键词:K-Mean; Entropy; Euclidian distance; Clustering
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有