期刊名称:Tellus A: Dynamic Meteorology and Oceanography
电子版ISSN:1600-0870
出版年度:2014
卷号:66
期号:1
页码:1-14
DOI:10.3402/tellusa.v66.21640
摘要:This study compares the ability of two approaches integrating models and data to forecast the Ligurian Sea regional oceanographic conditions in the short-term range (0–72 hours) when constrained by a common observation dataset. The post-processing 3-D super-ensemble (3DSE) algorithm, which uses observations to optimally combine multi-model forecasts into a single prediction of the oceanic variable, is first considered. The 3DSE predictive skills are compared to those of the Regional Ocean Modeling System model in which observations are assimilated through a more conventional ensemble Kalman filter (EnKF) approach. Assimilated measurements include sea surface temperature maps, and temperature and salinity subsurface observations from a fleet of five underwater gliders. Retrospective analyses are carried out to produce daily predictions during the 11-d period of the REP10 sea trial experiment. The forecast skill evaluation based on a distributed multi-sensor validation dataset indicates an overall superior performance of the EnKF, both at the surface and at depth. While the 3DSE and EnKF perform comparably well in the area spanned by the incorporated measurements, the 3DSE accuracy is found to rapidly decrease outside this area. In particular, the univariate formulation of the method combined with the absence of regular surface salinity measurements produces large errors in the 3DSE salinity forecast. On the contrary, the EnKF leads to more homogeneous forecast errors over the modelling domain for both temperature and salinity. The EnKF is found to consistently improve the predictions with respect to the control solution without assimilation and to be positively skilled when compared to the climatological estimate. For typical regional oceanographic applications with scarce subsurface observations, the lack of physical spatial and multivariate error covariances applicable to the individual model weights in the 3DSE formulation constitutes a major limitation for the performance of this multi-model-data fusion approach compared to conventional advanced data assimilation strategies.