首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction
  • 本地全文:下载
  • 作者:Takemasa Miyoshi ; Masaru Kunii
  • 期刊名称:Tellus A: Dynamic Meteorology and Oceanography
  • 电子版ISSN:1600-0870
  • 出版年度:2012
  • 卷号:64
  • 期号:1
  • 页码:1-11
  • DOI:10.3402/tellusa.v64i0.18408
  • 摘要:In addition to conventional observations, atmospheric temperature and humidity profile data from the Atmospheric Infrared Sounder (AIRS) Version 5 retrieval products are assimilated into the Weather Research and Forecasting (WRF) model, using the local ensemble transform Kalman filter (LETKF). Although a naive assimilation of all available quality-controlled AIRS retrieval data yields an inferior analysis, the additional enhancements of adaptive inflation and horizontal data thinning result in a general improvement of numerical weather prediction skill due to AIRS data. In particular, the adaptive inflation method is enhanced so that it no longer assumes temporal homogeneity of the observing network and allows for a better treatment of the temporally inhomogeneous AIRS data. Results indicate that the improvements due to AIRS data are more significant in longer-lead forecasts. Forecasts of Typhoons Sinlaku and Jangmi in September 2008 show improvements due to AIRS data.
  • 关键词:data assimilation ; numerical weather prediction ; ensemble Kalman filter ; satellite sounding data
国家哲学社会科学文献中心版权所有