首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Measures of observation impact in non-Gaussian data assimilation
  • 本地全文:下载
  • 作者:Alison Fowler ; Peter Jan Van Leeuwen
  • 期刊名称:Tellus A: Dynamic Meteorology and Oceanography
  • 电子版ISSN:1600-0870
  • 出版年度:2012
  • 卷号:64
  • 期号:1
  • 页码:1-16
  • DOI:10.3402/tellusa.v64i0.17192
  • 摘要:Non-Gaussian/non-linear data assimilation is becoming an increasingly important area of research in the Geosciences as the resolution and non-linearity of models are increased and more and more non-linear observation operators are being used. In this study, we look at the effect of relaxing the assumption of a Gaussian prior on the impact of observations within the data assimilation system. Three different measures of observation impact are studied: the sensitivity of the posterior mean to the observations, mutual information and relative entropy. The sensitivity of the posterior mean is derived analytically when the prior is modelled by a simplified Gaussian mixture and the observation errors are Gaussian. It is found that the sensitivity is a strong function of the value of the observation and proportional to the posterior variance. Similarly, relative entropy is found to be a strong function of the value of the observation. However, the errors in estimating these two measures using a Gaussian approximation to the prior can differ significantly. This hampers conclusions about the effect of the non-Gaussian prior on observation impact. Mutual information does not depend on the value of the observation and is seen to be close to its Gaussian approximation. These findings are illustrated with the particle filter applied to the Lorenz '63 system. This article is concluded with a discussion of the appropriateness of these measures of observation impact for different situations.
  • 关键词:mutual information ; relative entropy ; Lorenz 1963 system ; particle filter
国家哲学社会科学文献中心版权所有