首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Control of a Robot Arm Using Decoded Joint Angles from Electrocorticograms in Primate
  • 作者:Duk Shin ; Hiroyuki Kambara ; Natsue Yoshimura
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2018
  • 卷号:2018
  • DOI:10.1155/2018/2580165
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Electrocorticogram (ECoG) is a well-known recording method for the less invasive brain machine interface (BMI). Our previous studies have succeeded in predicting muscle activities and arm trajectories from ECoG signals. Despite such successful studies, there still remain solving works for the purpose of realizing an ECoG-based prosthesis. We suggest a neuromuscular interface to control robot using decoded muscle activities and joint angles. We used sparse linear regression to find the best fit between band-passed ECoGs and electromyograms (EMG) or joint angles. The best coefficient of determination for 100 s continuous prediction was 0.6333 0.0033 (muscle activations) and 0.6359 0.0929 (joint angles), respectively. We also controlled a 4 degree of freedom (DOF) robot arm using only decoded 4 DOF angles from the ECoGs in this study. Consequently, this study shows the possibility of contributing to future advancements in neuroprosthesis and neurorehabilitation technology.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有