首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Medical Image Classification Based on Deep Features Extracted by Deep Model and Statistic Feature Fusion with Multilayer Perceptron‬
  • 作者:ZhiFei Lai ; HuiFang Deng
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2018
  • 卷号:2018
  • DOI:10.1155/2018/2061516
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Medical image classification is a key technique of Computer-Aided Diagnosis (CAD) systems. Traditional methods rely mainly on the shape, color, and/or texture features as well as their combinations, most of which are problem-specific and have shown to be complementary in medical images, which leads to a system that lacks the ability to make representations of high-level problem domain concepts and that has poor model generalization ability. Recent deep learning methods provide an effective way to construct an end-to-end model that can compute final classification labels with the raw pixels of medical images. However, due to the high resolution of the medical images and the small dataset size, deep learning models suffer from high computational costs and limitations in the model layers and channels. To solve these problems, in this paper, we propose a deep learning model that integrates Coding Network with Multilayer Perceptron (CNMP), which combines high-level features that are extracted from a deep convolutional neural network and some selected traditional features. The construction of the proposed model includes the following steps. First, we train a deep convolutional neural network as a coding network in a supervised manner, and the result is that it can code the raw pixels of medical images into feature vectors that represent high-level concepts for classification. Second, we extract a set of selected traditional features based on background knowledge of medical images. Finally, we design an efficient model that is based on neural networks to fuse the different feature groups obtained in the first and second step. We evaluate the proposed approach on two benchmark medical image datasets: HIS2828 and ISIC2017. We achieve an overall classification accuracy of 90.1 and 90.2, respectively, which are higher than the current successful methods.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有