首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Sensor Alignment for Ballistic Trajectory Estimation via Sparse Regularization
  • 作者:Dong Li ; Lei Gong
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2018
  • 卷号:9
  • 期号:10
  • 页码:255
  • DOI:10.3390/info9100255
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Sensor alignment plays a key role in the accurate estimation of the ballistic trajectory. A sparse regularization-based sensor alignment method coupled with the selection of a regularization parameter is proposed in this paper. The sparse regularization model is established by combining the traditional model of trajectory estimation with the sparse constraint of systematic errors. The trajectory and the systematic errors are estimated simultaneously by using the Newton algorithm. The regularization parameter in the model is crucial to the accuracy of trajectory estimation. Stein’s unbiased risk estimator (SURE) and general cross-validation (GCV) under the nonlinear measurement model are constructed for determining the suitable regularization parameter. The computation methods of SURE and GCV are also investigated. Simulation results show that both SURE and GCV can provide regularization parameter choices of high quality for minimizing the errors of trajectory estimation, and that our method can improve the accuracy of trajectory estimation over the traditional non-regularization method. The estimates of systematic errors are close to the true value.
  • 关键词:sensor alignment; ballistic trajectory estimation; sparse regularization; systematic errors; SURE; GCV sensor alignment ; ballistic trajectory estimation ; sparse regularization ; systematic errors ; SURE ; GCV
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有