首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Evidence of vegetation greening at alpine treeline ecotones: three decades of Landsat spectral trends informed by lidar-derived vertical structure
  • 作者:Douglas K Bolton ; Nicholas C Coops ; Txomin Hermosilla
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2018
  • 卷号:13
  • 期号:8
  • 页码:084022
  • DOI:10.1088/1748-9326/aad5d2
  • 语种:English
  • 出版社:IOP Publishing Ltd
  • 摘要:Monitoring changes in vegetation at high-latitude and alpine treeline ecotones is critical for characterizing changes to carbon and energy budgets, plant species richness, and habitat suitability and is often considered a bellwether of a changing climate. Herein, we used transects of airborne laser scanning (ALS) data to identify alpine treeline ecotones in the Yukon Territory of Canada, and assessed changes in vegetation greenness using a time-series of Landsat imagery over a 30 year period from 1985 to 2015. Specifically, we calculated the enhanced vegetation index (EVI) from annual Landsat composites and assessed temporal trends within 500 m of detected forest-lines (i.e., transition point from continuous forest into treeline ecotones) using Theil–Sen's nonparametric regression. Across 74 detected treeline ecotones, 27.5% of Landsat pixels displayed a significant positive trend in EVI and 5.6% of pixels displayed a significant negative trend (p < 0.05). By using ALS data to determine vegetation structural class, we found that non-treed pixels had the highest percentage of significant positive trends in vegetation greenness (40.8%), followed by shrubs (30.5%), with lower percentages in sparse forests (18.9%) and open/dense forests (13.3%). These results suggest herbaceous and shrub vegetation types are undergoing the most significant changes in greenness, likely due to increases in shrub cover and herbaceous biomass in areas associated with these alpine treeline ecotones. The limited increases in EVI in forests likely indicates that vegetation cover is changing less rapidly in forests than in shrub and herbaceous vegetation types. Moreover, EVI may not be capturing increased height growth in forests near the treeline. Combining ALS data and Landsat time-series data provides a useful approach to locate and characterize alpine treeline ecotones, and enables the direct assessment of which vegetation structural classes are experiencing the greatest greening trends, thereby providing new insights to ecosystem change.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有