摘要:Further prospects for the development of “Pioner” gold deposit are associated with the development of deep-seated ore bodies by an underground method. When assessing the bump hazard of proposed technological solutions for stripping and working out the pit reserves of the deposit and substantiating the safe working conditions, some comprehensive studies were carried out, including an analysis of the geological and geomechanical conditions of deposit's development, detailed study of the physical and mechanical properties of rocks and ores, investigation of the fracture tectonics of the deposit and stress and strain state of the rock massif of the deposit. The performed modeling of the geomechanical processes of the rock massif with the use of numerical methods made it possible to identify the safe parameters of the guarding safety pillars under the pit bottom, and also to identify areas and elements of rock structures characterized by a minimum margin of stability according to the criteria of the acting maximum compressive and tangential stresses after complete mining of ore bodies. Recommendations were developed on the rational order of mining of ore bodies and on effective ways to protect and maintain mine workings.
其他摘要:Further prospects for the development of “Pioner” gold deposit are associated with the development of deep-seated ore bodies by an underground method. When assessing the bump hazard of proposed technological solutions for stripping and working out the pit reserves of the deposit and substantiating the safe working conditions, some comprehensive studies were carried out, including an analysis of the geological and geomechanical conditions of deposit's development, detailed study of the physical and mechanical properties of rocks and ores, investigation of the fracture tectonics of the deposit and stress and strain state of the rock massif of the deposit. The performed modeling of the geomechanical processes of the rock massif with the use of numerical methods made it possible to identify the safe parameters of the guarding safety pillars under the pit bottom, and also to identify areas and elements of rock structures characterized by a minimum margin of stability according to the criteria of the acting maximum compressive and tangential stresses after complete mining of ore bodies. Recommendations were developed on the rational order of mining of ore bodies and on effective ways to protect and maintain mine workings.