其他摘要:With the rapid development of electric vehicles in recent years, the random load producing from the electric vehicles access to the distribution network may increase the volatility of electricity and aggravate the power imbalance of the distribution network. When a large number of electric vehicles are being charged at the same time, the random load may exceed the expectation design of the traditional distribution network and distribution transformers need to transfer more power. If using large capacity distribution transformers, it may still be difficult to meet the requirements and increase investment. Whereas, a method solving dynamic power imbalance of distribution network is proposed in this paper. In this solution, DC transmission lines are used to link different distribution transformers, and based on the Three-Phase Voltage Source Converter, which results in a reasonable distribution of the load and mitigates the impact of soaring load of electric vehicle. This paper describes a mathematical model of the load of distribution network containing electric vehicles access, which is simulated by measured data and Monte Carlo simulation method. The effectiveness of the proposed method is verified through the simulation analysis.