Mucopolysaccharidosis type I (MPS I) is a lysosomal disease caused by α- l -iduronidase (IDUA) deficiency and accumulation of glycosaminoglycans (GAG). Lentiviral vector encoding correct IDUA cDNA could be used for treating MPS I. To optimize the lentiviral vector design, 9 constructs were designed by combinations of various promoters, enhancers, and codon optimization. After in vitro transfection into 293FT cells, 5 constructs achieved the highest IDUA activities (5613 to 7358 nmol/h/mg protein). These 5 candidate vectors were then tested by injection (1 × 107 TU/g) into neonatal MPS I mice. After 30 days, one vector, CCEoIDW, achieved the highest IDUA levels: 2.6% of wildtype levels in the brain, 9.9% in the heart, 200% in the liver and 257% in the spleen. CCEoIDW achieved the most significant GAG reduction: down 49% in the brain, 98% in the heart, 100% in the liver and 95% in the spleen. Further, CCEoIDW had the lowest transgene frequency, especially in the gonads (0.03 ± 0.01 copies/100 cells), reducing the risk of insertional mutagenesis and germ-line transmission. Therefore, CCEoIDW is selected as the optimal lentiviral vector for treating MPS I disease and will be applied in large animal preclinical studies. Further, taken both in vitro and in vivo comparisons together, codon optimization, use of EF-1α promoter and woodchuck hepatitis virus posttranscriptional response element (WPRE) could enhance transgene expression. These results provided a better understanding of factors contributing efficient transgene expression in lentiviral gene therapies.