摘要:Smart buildings are a key element to walk towards smart cities and grids. Nonetheless, there are several degrees of intelligence. A first step is to incorporate commercial self-consumption solutions in buildings so they can manage the energy from local renewable power generators. A second step is to substitute this commercial solutions with an optimized Energy Management System (EMS) to reduce the electricity bill at the end of the month. Further. This EMS may contribute to stabilize and improve the quality and emissions of the electricity grid by offering some energy flexibility to the electricity system in favour of decentralization. This study compares the battery aging between buildings that count with an EMS to optimize the electricity bill under three scenarios in contrast to those that have a simple self-consumption kit. Lithium ion battery lifespan is estimated by means of an electric equivalent battery circuit model that runs on Matlab and simulates its behaviour through time. Moreover, this study evaluates the distribution of the battery costs regarding its use, observing that batteries controlled by simple self-consumption kits have longer lifespan because they are underused, ending up in higher calendar aging costs than the ones that are controlled by EMS.
其他摘要:Smart buildings are a key element to walk towards smart cities and grids. Nonetheless, there are several degrees of intelligence. A first step is to incorporate commercial self-consumption solutions in buildings so they can manage the energy from local renewable power generators. A second step is to substitute this commercial solutions with an optimized Energy Management System (EMS) to reduce the electricity bill at the end of the month. Further. This EMS may contribute to stabilize and improve the quality and emissions of the electricity grid by offering some energy flexibility to the electricity system in favour of decentralization. This study compares the battery aging between buildings that count with an EMS to optimize the electricity bill under three scenarios in contrast to those that have a simple self-consumption kit. Lithium ion battery lifespan is estimated by means of an electric equivalent battery circuit model that runs on Matlab and simulates its behaviour through time. Moreover, this study evaluates the distribution of the battery costs regarding its use, observing that batteries controlled by simple self-consumption kits have longer lifespan because they are underused, ending up in higher calendar aging costs than the ones that are controlled by EMS.