首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Study on whole factorial experiment of polishing the micro-hole in non-linear tubes by abrasive flow
  • 作者:Guosong Liu ; Xinming Zhang ; Xiang Zang
  • 期刊名称:Advances in Mechanical Engineering
  • 印刷版ISSN:1687-8140
  • 电子版ISSN:1687-8140
  • 出版年度:2018
  • 卷号:10
  • 期号:8
  • DOI:10.1177/1687814018794590
  • 语种:English
  • 出版社:Sage Publications Ltd.
  • 摘要:It is generally observed that special channels exit in many key components of machine, such as non-linear tube, applied in military or civil industries. Its surface finish is a crucial factor in the whole performance of machine. In military and civil fields, many key parts have special passages, such as non-linear tube. The surface quality of non-linear tube usually decides the general using property of the whole equipment. The abrasive flow machining technology can effectively improve the surface quality of non-linear tube parts and promote the using property of the whole equipment. The technology of solid-liquid two-phase abrasive flow machining can obtain higher enhancement in surface quality. To investigate the processing technology of abrasive flow machining for non-linear tube–injection nozzle, we performed a full factorial experiment modifying critical process parameters such as particle density, particle size, and abrasive viscosity during the machining. The study investigated the relationship among abrasive particle physical property, surface quality of non-linear tube, and the optimal parameters. At the same time, we deduced the regression equation which takes the abrasive particle physical property as the key factor. Through full factorial experimental study, it is found that under the experimental conditions of this article, abrasive flow polishing process serves best when the abrasive concentration is 10% and the particle size is 6 μm. Moreover, the verification experiment of the non-linear nozzle is carried out. The average value of the experimental data is located in the prediction interval, which confirmed the accuracy of the whole factor test. The experimental results can provide technical support for further research of abrasive flow machining theory. The research results in this article have profound theoretical significance and practical value for improving the machining efficiency of non-linear parts and obtaining high-quality-surface passages. The study data possess important theory significance and practical value for improving the processing efficiency for non-linear tube and obtaining a high-quality surface channel. The experimental results can provide technology support for further study on abrasive flow machining theory.
  • 关键词:Abrasive flow machining; whole factorial experiment; processing technology; two-phase flow; surface quality
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有