期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2018
卷号:15
期号:3
DOI:10.1177/1729881418776845
语种:English
出版社:SAGE Publications
摘要:This article proposes an active disturbance rejection controller design scheme to stabilize the unstable limit cycle of a compass-like biped robot. The idea of transverse coordinate transformation is applied to form the control system based on angular momentum. With the linearization approximation, the limit cycle stabilization problem is simplified into the stabilization of an linear time-invariant system, which is known as transverse coordinate control. In order to solve the problem of poor adaptability caused by linearization approximation, we design an active disturbance rejection controller in the form of a serial system. With the active disturbance rejection controller, the system error can be estimated by extended state observer and compensated by nonlinear state error feedback, and the unstable limit cycle can be stabilized. The numerical simulations show that the control law enhances the performance of transverse coordinate control.
关键词:Biped robot; walking control; active disturbance rejection controller