期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2018
卷号:15
期号:3
DOI:10.1177/1729881418774673
语种:English
出版社:SAGE Publications
摘要:Ant colony algorithm is an intelligent optimization algorithm that is widely used in path planning for mobile robot due to its advantages, such as good feedback information, strong robustness and better distributed computing. However, it has some problems such as the slow convergence and the prematurity. This article introduces an improved ant colony algorithm that uses a stimulating probability to help the ant in its selection of the next grid and employs new heuristic information based on the principle of unlimited step length to expand the vision field and to increase the visibility accuracy; and also the improved algorithm adopts new pheromone updating rule and dynamic adjustment of the evaporation rate to accelerate the convergence speed and to enlarge the search space. Simulation results prove that the proposed algorithm overcomes the shortcomings of the conventional algorithms.