期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2018
卷号:15
期号:2
DOI:10.1177/1729881417746950
语种:English
出版社:SAGE Publications
摘要:The tail driving system based on linear hypocycloid has the advantages of adjustable phase difference, no quick-return, and combining speed reducer with transformation mechanism. The two-joint composite motion of the driving system was realized via caudal peduncle’s linear reciprocating in cosine and caudal fin’s oscillating in sine-like. First, dynamic and hydrodynamic models were established with momentum theorem, Lagrange theorem, and two-dimensional Foil theory. Second, study on lift force and vortex ring with optimal results was further conducted by numerical simulation in FLUENT. At last, theoretical derivation and simulation results have been testified in experiments.