首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Dynamic walking control of humanoid robots combining linear inverted pendulum mode with parameter optimization
  • 作者:Chengju Liu ; Jing Ning ; Qijun Chen
  • 期刊名称:International Journal of Advanced Robotic Systems
  • 印刷版ISSN:1729-8806
  • 电子版ISSN:1729-8814
  • 出版年度:2018
  • 卷号:15
  • 期号:1
  • DOI:10.1177/1729881417749672
  • 语种:English
  • 出版社:SAGE Publications
  • 摘要:To improve the robustness of biped walking, a model parameters optimization method based on policy gradient decent learning is presented. For the linear inverted pendulum mode-based model parameters optimization, firstly, select the input parameters of the inverted pendulum model and the torso attitude parameters of the robot as the correction variables and establish the correction equation. Then, using the tracking errors of center of mass (CoM) of the robot and the errors of the robot posture relative to the upright state of the body to establish the fitness function. According to the fitness function, the gain coefficients in the model parameters correction equation are optimized by using the strategy gradient learning method, and the modified gain parameters are substituted into the model parameters correction equation to obtain the correction amount. By applying the model parameters optimization strategy, the robot can quickly and in real time adjust the body posture and walking patterns under unknown disturbances, hence, the walking robustness can be enhanced. Simulation and experiments on a full-body humanoid robot NAO validate the effectiveness of the proposed method. The experiments show that the optimized model yields a more controlled, robust walk on NAO robot and on various surfaces without additional manual parameters tuning.
  • 关键词:Humanoid robot; robust walking; active balance; model parameters correction; policy gradient decent learning
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有