期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2018
卷号:15
期号:1
DOI:10.1177/1729881417749949
语种:English
出版社:SAGE Publications
摘要:Intelligent transportation systems and safety driver-assistance systems are important research topics in the field of transportation and traffic management. This study investigates the key problems in front vehicle detection and tracking based on computer vision. A video of a driven vehicle on an urban structured road is used to predict the subsequent motion of the front vehicle. This study provides the following contributions. (1) A new adaptive threshold segmentation algorithm is presented in the image preprocessing phase. This algorithm is resistant to interference from complex environments. (2) Symmetric computation based on a traditional histogram of gradient (HOG) feature vector is added in the vehicle detection phase. Symmetric HOG feature with AdaBoost classification improves the detection rate of the target vehicle. (3) A motion model based on adaptive Kalman filter is established. Experiments show that the prediction of Kalman filter model provides a reliable region for eliminating the interference of shadows and sharply decreasing the missed rate.