期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2018
卷号:15
期号:1
DOI:10.1177/1729881417748445
语种:English
出版社:SAGE Publications
摘要:The quadratic programming problem has broad applications in mobile robot path planning. This article presents an efficient optimization algorithm for globally solving the quadratic programming problem. By utilizing the convexity of univariate quadratic functions, we construct the linear relaxation programming problem of the quadratic programming problem, which can be embedded within a branch-and-bound structure without introducing new variables and constraints. In addition, a new pruning technique is inserted into the branch-and-bound framework for improving the speed of the algorithm. The global convergence of the proposed algorithm is proved. Compared with some known algorithms, numerical experiment not only demonstrates the higher computational efficiency of the proposed algorithm but also proves that the proposed algorithm is an efficient approach to solve the problems of path planning for the mobile robot.
关键词:Quadratic programming problem; global optimization; linear relaxation programming; pruning technique; branch-and-bound optimization algorithm; path planning