首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Multilayer Hybrid Deep-Learning Method for Waste Classification and Recycling
  • 作者:Yinghao Chu ; Chen Huang ; Xiaodan Xie
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2018
  • 卷号:2018
  • DOI:10.1155/2018/5060857
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This study proposes a multilayer hybrid deep-learning system (MHS) to automatically sort waste disposed of by individuals in the urban public area. This system deploys a high-resolution camera to capture waste image and sensors to detect other useful feature information. The MHS uses a CNN-based algorithm to extract image features and a multilayer perceptrons (MLP) method to consolidate image features and other feature information to classify wastes as recyclable or the others. The MHS is trained and validated against the manually labelled items, achieving overall classification accuracy higher than 90% under two different testing scenarios, which significantly outperforms a reference CNN-based method relying on image-only inputs.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有