首页    期刊浏览 2025年07月10日 星期四
登录注册

文章基本信息

  • 标题:An Optimization Framework of Multiobjective Artificial Bee Colony Algorithm Based on the MOEA Framework
  • 作者:Jiuyuan Huo ; Liqun Liu
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2018
  • 卷号:2018
  • DOI:10.1155/2018/5865168
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The artificial bee colony (ABC) algorithm has become one of the popular optimization metaheuristics and has been proven to perform better than many state-of-the-art algorithms for dealing with complex multiobjective optimization problems. However, the multiobjective artificial bee colony (MOABC) algorithm has not been integrated into the common multiobjective optimization frameworks which provide the integrated environments for understanding, reusing, implementation, and comparison of multiobjective algorithms. Therefore, a unified, flexible, configurable, and user-friendly MOABC algorithm framework is presented which combines a multiobjective ABC algorithm named RMOABC and the multiobjective evolution algorithms (MOEA) framework in this paper. The multiobjective optimization framework aims at the development, experimentation, and study of metaheuristics for solving multiobjective optimization problems. The framework was tested on the Walking Fish Group test suite, and a many-objective water resource planning problem was utilized for verification and application. The experiment’s results showed the framework can deal with practical multiobjective optimization problems more effectively and flexibly, can provide comprehensive and reliable parameters sets, and can complete reference, comparison, and analysis tasks among multiple optimization algorithms.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有