首页    期刊浏览 2025年05月23日 星期五
登录注册

文章基本信息

  • 标题:Modeling forest biomass using Very-High-Resolution data—Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images
  • 本地全文:下载
  • 作者:Joachim Maack ; Teja Kattenborn ; Fabian Ewald Fassnacht
  • 期刊名称:European Journal of Remote Sensing
  • 电子版ISSN:2279-7254
  • 出版年度:2015
  • 卷号:48
  • 期号:1
  • 页码:245-261
  • DOI:10.5721/EuJRS20154814
  • 摘要:We used spectral, textural and photogrammetric information from very-high resolution (VHR) stereo satellite data (Pléiades and WorldView-2) to estimate forest biomass across two test sites located in Chile and Germany. We compared Random Forest model performances of different predictor sets (spectral, textural, and photogrammetric), forest inventory designs and filter sizes (texture information). Best model performances were obtained with photogrammetric combined with either textural or spectral information and smaller, but more field plots. Stereo-VHR images showed a great potential for canopy height model (CHM) generation and could be an adequate alternative to LiDAR and InSAR techniques.
  • 关键词:Biomass modelling ; WordView; 2 ; Pléiades ; random forest ; photogrammetry ; canopy height models
国家哲学社会科学文献中心版权所有