首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Contextual PolSAR image classification using fractal dimension and support vector machines
  • 本地全文:下载
  • 作者:Hossein Aghababaee ; Jalal Amini ; Yu-Chang Tzeng
  • 期刊名称:European Journal of Remote Sensing
  • 电子版ISSN:2279-7254
  • 出版年度:2013
  • 卷号:46
  • 期号:1
  • 页码:317-332
  • DOI:10.5721/EuJRS20134618
  • 摘要:In this paper, a new classification scheme of polarimetric synthetic aperture radar (PolSAR) images using fractal dimension as contextual information is proposed. Support vector machines (SVM) due to their ability to handle the nonlinear classifier problem are applied to a new fractal feature vector, which is constructed from Pauli decomposed vector and fractal dimensions. Fractal dimension is computed based on the concepts of fractional Brownian motion (fBm) and wavelet multi-resolution analysis using a self-adaptive window approach and fuzzy logic. The experimental results on AIRSAR images prove effectiveness of the proposed vector in comparison to the Pauli decomposed vector.
  • 关键词:Classification ; PolSAR image ; support vector machines ; fractal dimension ; wavelet multi-resolution
国家哲学社会科学文献中心版权所有