首页    期刊浏览 2025年07月13日 星期日
登录注册

文章基本信息

  • 标题:Comparison of standard maximum likelihood classification and polytomous logistic regression used in remote sensing
  • 本地全文:下载
  • 作者:John Hogland ; Nedret Billor ; Nathaniel Anderson
  • 期刊名称:European Journal of Remote Sensing
  • 电子版ISSN:2279-7254
  • 出版年度:2013
  • 卷号:46
  • 期号:1
  • 页码:623-640
  • DOI:10.5721/EuJRS20134637
  • 摘要:Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To assess the utility of PLR in image classification, we compared the results of 15 classifications using independent validation datasets, estimates of kappa and error, and a non-parametric analysis of variance derived from visually interpreted observations, Landsat Enhanced Thematic Mapper plus imagery, PLR, and traditional maximum likelihood classifications algorithms.
  • 关键词:discriminant ; logistic ; multinomial ; polytomous ; probabilistic ; remote sensing
国家哲学社会科学文献中心版权所有