摘要:LTO or Li4Ti5O12 (lithium titanate) is a compound that is used as an anode component in a lithium-ion battery. LTO anode is used because it has zero-strain properties and doesn't produce SEI (solid electrolyte interphase) which cause low battery performance. However, LTO also has a problem, which is its low capacity. To overcome this problem, the LTO needs to be combined with other materials that have high capacity, which, in this case, are active carbon (AC) and Sn. Making the LTO to be nano-sized can also improve the performance of the battery, thus we tried to synthesize LTO in nanorods form. LTO nanorods are synthesized by hydrothermal in NaOH 4 M solution. The LTO nanorods are mixed with various Sn (5wt%, 10wt%, and 15wt%) and 5wt% activated carbon. LTO nanorods/Sn-AC composite was characterized using XRD, SEM-EDS, and BET and the battery performance was analyzed by EIS, CV, and CD. The results showed that the highest capacity was obtained at LTO nanorods-AC/15wt% Sn with 127.24 mAh/g. This result shows that LTO nanorods-AC/15wt% Sn could be used as an alternative for anode component.
其他摘要:LTO or Li4Ti5O12 (lithium titanate) is a compound that is used as an anode component in a lithium-ion battery. LTO anode is used because it has zero-strain properties and doesn't produce SEI (solid electrolyte interphase) which cause low battery performance. However, LTO also has a problem, which is its low capacity. To overcome this problem, the LTO needs to be combined with other materials that have high capacity, which, in this case, are active carbon (AC) and Sn. Making the LTO to be nano-sized can also improve the performance of the battery, thus we tried to synthesize LTO in nanorods form. LTO nanorods are synthesized by hydrothermal in NaOH 4 M solution. The LTO nanorods are mixed with various Sn (5wt%, 10wt%, and 15wt%) and 5wt% activated carbon. LTO nanorods/Sn-AC composite was characterized using XRD, SEM-EDS, and BET and the battery performance was analyzed by EIS, CV, and CD. The results showed that the highest capacity was obtained at LTO nanorods-AC/15wt% Sn with 127.24 mAh/g. This result shows that LTO nanorods-AC/15wt% Sn could be used as an alternative for anode component.