首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Thermal Management of Electric Vehicle Batteries Using Heat Pipe and Phase Change Materials
  • 本地全文:下载
  • 作者:Muhammad Amin ; Bambang Ariantara ; Nandy Putra
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:67
  • 页码:1-5
  • DOI:10.1051/e3sconf/20186703034
  • 出版社:EDP Sciences
  • 摘要:The performance of an electric vehicle depends on the battery used. While, in the operation of an electric vehicle, batteries experience a quick heating especially at the beginning of charging and could cause a fire. Therefore, the solution could be proposed is by employing heat pipe and Phase Change Material (PCM) for cooling of battery. The heat pipe serves to transfer the battery’s heat energy. In other hands, PCM functions as a heat sink when the battery runs, so its performance will stable and extend the lifespan. This study aimed to evaluate the performance of electric vehicle batteries at a temperature of 50°C using the combination of heat pipe and PCM. The ‘L’ type of heat pipe and beeswax PCM were assembled as cooling device. In addition, a battery simulator was employed as a test instrument by varying the heat load of 20, 30, 40, and 50 W. The experiments were successfully conducted, and the results showed that the addition of heat pipe and PCM could keep the surface temperature of battery below 50°C, at heat load of 20 - 50 W. Heat pipe and PCM for battery’s cooling system, can reduce the battery surface temperature significantly and can be proposed as an alternative system for cooling battery.
  • 其他摘要:The performance of an electric vehicle depends on the battery used. While, in the operation of an electric vehicle, batteries experience a quick heating especially at the beginning of charging and could cause a fire. Therefore, the solution could be proposed is by employing heat pipe and Phase Change Material (PCM) for cooling of battery. The heat pipe serves to transfer the battery’s heat energy. In other hands, PCM functions as a heat sink when the battery runs, so its performance will stable and extend the lifespan. This study aimed to evaluate the performance of electric vehicle batteries at a temperature of 50°C using the combination of heat pipe and PCM. The ‘L’ type of heat pipe and beeswax PCM were assembled as cooling device. In addition, a battery simulator was employed as a test instrument by varying the heat load of 20, 30, 40, and 50 W. The experiments were successfully conducted, and the results showed that the addition of heat pipe and PCM could keep the surface temperature of battery below 50°C, at heat load of 20 - 50 W. Heat pipe and PCM for battery’s cooling system, can reduce the battery surface temperature significantly and can be proposed as an alternative system for cooling battery.
国家哲学社会科学文献中心版权所有