摘要:Landslides which form in anthropogenic soils are complicated from a geological engineering and geotechnical point of view. Each case requires a detailed investigation and the selection of effective reinforcements is a difficult project issue. The study presents the problem of the stability analysis of landslides occurring in the anthropogenic soils of the Kosciuszko Mound in Cracow. The previously performed protections are discussed to highlight their ineffectiveness and the current technical condition of the mound is also presented. By overlapping the results of displacement measurements made with a terrestrial laser scanner, a differential model of the terrain was created which made it possible to determine the size and direction of the deformation of the slopes of the mound and the tendencies for the development of landslide movements in this area. A cross-section, selected on the basis of the model, was numerically analysed using the finite element method (FEM) in the Midas GTS NX program. As a result of the analysis, the values of the displacements and strains occurring in the Mound were calculated. On the basis of the value of the safety factor obtained, it was also possible to assess the risk of landslide movements.
其他摘要:Landslides which form in anthropogenic soils are complicated from a geological engineering and geotechnical point of view. Each case requires a detailed investigation and the selection of effective reinforcements is a difficult project issue. The study presents the problem of the stability analysis of landslides occurring in the anthropogenic soils of the Kosciuszko Mound in Cracow. The previously performed protections are discussed to highlight their ineffectiveness and the current technical condition of the mound is also presented. By overlapping the results of displacement measurements made with a terrestrial laser scanner, a differential model of the terrain was created which made it possible to determine the size and direction of the deformation of the slopes of the mound and the tendencies for the development of landslide movements in this area. A cross-section, selected on the basis of the model, was numerically analysed using the finite element method (FEM) in the Midas GTS NX program. As a result of the analysis, the values of the displacements and strains occurring in the Mound were calculated. On the basis of the value of the safety factor obtained, it was also possible to assess the risk of landslide movements.