首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Bioinspired Synthesis of Carbon Dots/g-C3N4 Nanocomposites for Photocatalytic Application
  • 本地全文:下载
  • 作者:Jun Yan Tai ; Kah Hon Leong ; Pichiah Saravanan
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:65
  • 页码:1-7
  • DOI:10.1051/e3sconf/20186505015
  • 出版社:EDP Sciences
  • 摘要:This study reports a fast and green preparative strategy to synthesize water soluble and fluorescent carbon quantum dots (CQDs) through hydrothermal method by using low cost organic waste of human fingernails as the carbon precursor for the first time. The coupling of CQD with pure carbon nitride (g-C3N4) was further explored to enhance the latter’s performance in photocatalysis of 2,4-dicholorophenol (2,4-DCP), a toxic and recalcitrant compound mostly released from industrial effluent. Such coupling overcame the weakness of pure g-C3N4 in photocatalysis process by broadening its visible light absorption and promoting the charge separation. As a result, the removal rate of CQD/ g-C3N4(10) was up to 71.53%, which was approximately 1.5 times higher than that of pure g-C3N4 under sunlight irradiation. The morphological structure, optical properties and chemical compositions of CQDs/g-C3N4 composites were characterized using various spectroscopic techniques including field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray (EDX) and Ultraviolet-visible diffuse reflectance spectra (UV-DRS).
  • 其他摘要:This study reports a fast and green preparative strategy to synthesize water soluble and fluorescent carbon quantum dots (CQDs) through hydrothermal method by using low cost organic waste of human fingernails as the carbon precursor for the first time. The coupling of CQD with pure carbon nitride (g-C3N4) was further explored to enhance the latter’s performance in photocatalysis of 2,4-dicholorophenol (2,4-DCP), a toxic and recalcitrant compound mostly released from industrial effluent. Such coupling overcame the weakness of pure g-C3N4 in photocatalysis process by broadening its visible light absorption and promoting the charge separation. As a result, the removal rate of CQD/ g-C3N4(10) was up to 71.53%, which was approximately 1.5 times higher than that of pure g-C3N4 under sunlight irradiation. The morphological structure, optical properties and chemical compositions of CQDs/g-C3N4 composites were characterized using various spectroscopic techniques including field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray (EDX) and Ultraviolet-visible diffuse reflectance spectra (UV-DRS).
国家哲学社会科学文献中心版权所有