首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Improvement of SVR-Based Drought Forecasting Models using Wavelet Pre-Processing Technique
  • 本地全文:下载
  • 作者:Kit Fai Fung ; Yuk Feng Huang ; Chai Hoon Koo
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:65
  • 页码:1-10
  • DOI:10.1051/e3sconf/20186507007
  • 出版社:EDP Sciences
  • 摘要:Drought is a damaging natural hazard due to the lack of precipitation from the expected amount for a period of time. Mitigations are required to reduced its impact. Due to the difficulty in determining the onset and offset of droughts, accurate drought forecasting approaches are required for drought risk management. Given the growing use of machine learning in the field, Wavelet-Boosting Support Vector Regression (W-BS-SVR) was proposed for drought forecasting at Langat River Basin, Malaysia. Monthly rainfall, mean temperature and evapotranspiration for years 1976 - 2015 were used to compute Standardized Precipitation Evapotranspiration Index (SPEI) in this study, producing SPEI-1, SPEI-3 and SPEI-6. The 1-month lead time SPEIs forecasting capability of W-BS-SVR model was compared with the Support Vector Regression (SVR) and Boosting-Support Vector Regression (BS-SVR) models using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (R2) and Adjusted R2. The results demonstrated that W-BS-SVR provides higher accuracy for drought prediction in Langat River Basin.
  • 其他摘要:Drought is a damaging natural hazard due to the lack of precipitation from the expected amount for a period of time. Mitigations are required to reduced its impact. Due to the difficulty in determining the onset and offset of droughts, accurate drought forecasting approaches are required for drought risk management. Given the growing use of machine learning in the field, Wavelet-Boosting Support Vector Regression (W-BS-SVR) was proposed for drought forecasting at Langat River Basin, Malaysia. Monthly rainfall, mean temperature and evapotranspiration for years 1976 - 2015 were used to compute Standardized Precipitation Evapotranspiration Index (SPEI) in this study, producing SPEI-1, SPEI-3 and SPEI-6. The 1-month lead time SPEIs forecasting capability of W-BS-SVR model was compared with the Support Vector Regression (SVR) and Boosting-Support Vector Regression (BS-SVR) models using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (R2) and Adjusted R2. The results demonstrated that W-BS-SVR provides higher accuracy for drought prediction in Langat River Basin.
国家哲学社会科学文献中心版权所有