期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2018
卷号:15
期号:6
DOI:10.1177/1729881418813271
语种:English
出版社:SAGE Publications
摘要:An autonomous underwater vehicle is able to conduct coverage detections, such as sea terrain mapping and submerged objects detection, using sonar. This work addresses the task of both optimizing and following routes that present a ladder shape. First, a planning method to determine a nearly optimal coverage route is designed. The track spacing is optimized considering the seabed type and the sonar range for the purpose of increasing detection probability. It also adds adaptability to confined water, such as harbors, by decomposing the geometrically concave mission region during the processing of the environmental data. Next, a decoupled and two-layered structure is adopted to design the following controller. The route is followed in the form of sequenced-lines tracking. A proportion–integral–derivative algorithm with fuzzy parameters adjustment is employed to calculate a reference heading angle according to the transverse position deviation in designing the guidance controller. An adaptive nonlinear S-surface law is adopted to design the yaw control. The route following the method is demonstrated with sonar (including side scanning sonar and multi-beam echo sounder) imagery collected in terrain mapping and object detection through sea trials.