首页    期刊浏览 2025年05月22日 星期四
登录注册

文章基本信息

  • 标题:Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry
  • 作者:Bing Yang ; Haifan Wu ; Paul D. Schnier
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:44
  • 页码:11162-11167
  • DOI:10.1073/pnas.1813574115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Chemical cross-linking mass spectrometry (CXMS) is being increasingly used to study protein assemblies and complex protein interaction networks. Existing CXMS chemical cross-linkers target only Lys, Cys, Glu, and Asp residues, limiting the information measurable. Here we report a “plant-and-cast” cross-linking strategy that employs a heterobifunctional cross-linker that contains a highly reactive succinimide ester as well as a less reactive sulfonyl fluoride. The succinimide ester reacts rapidly with surface Lys residues “planting” the reagent at fixed locations on protein. The pendant aryl sulfonyl fluoride is then “cast” across a limited range of the protein surface, where it can react with multiple weakly nucleophilic amino acid sidechains in a proximity-enhanced sulfur-fluoride exchange (SuFEx) reaction. Using proteins of known structures, we demonstrated that the heterobifunctional agent formed cross-links between Lys residues and His, Ser, Thr, Tyr, and Lys sidechains. This geometric specificity contrasts with current bis-succinimide esters, which often generate nonspecific cross-links between lysines brought into proximity by rare thermal fluctuations. Thus, the current method can provide diverse and robust distance restraints to guide integrative modeling. This work provides a chemical cross-linker targeting unactivated Ser, Thr, His, and Tyr residues using sulfonyl fluorides. In addition, this methodology yielded a variety of cross-links when applied to the complex Escherichia coli cell lysate. Finally, in combination with genetically encoded chemical cross-linking, cross-linking using this reagent markedly increased the identification of weak and transient enzyme–substrate interactions in live cells. Proximity-dependent cross-linking will dramatically expand the scope and power of CXMS for defining the identities and structures of protein complexes.
  • 关键词:chemical cross-linker ; sulfur–fluoride exchange ; cross-linking mass spectrometry ; proximity-enhanced reactivity ; protein–protein interaction
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有