首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data
  • 作者:Thomas L. Mohren ; Thomas L. Daniel ; Steven L. Brunton
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:42
  • 页码:10564-10569
  • DOI:10.1073/pnas.1808909115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Sparse sensor placement is a central challenge in the efficient characterization of complex systems when the cost of acquiring and processing data is high. Leading sparse sensing methods typically exploit either spatial or temporal correlations, but rarely both. This work introduces a sparse sensor optimization that is designed to leverage the rich spatiotemporal coherence exhibited by many systems. Our approach is inspired by the remarkable performance of flying insects, which use a few embedded strain-sensitive neurons to achieve rapid and robust flight control despite large gust disturbances. Specifically, we identify neural-inspired sensors at a few key locations on a flapping wing that are able to detect body rotation. This task is particularly challenging as the rotational twisting mode is three orders of magnitude smaller than the flapping modes. We show that nonlinear filtering in time, built to mimic strain-sensitive neurons, is essential to detect rotation, whereas instantaneous measurements fail. Optimized sparse sensor placement results in efficient classification with approximately 10 sensors, achieving the same accuracy and noise robustness as full measurements consisting of hundreds of sensors. Sparse sensing with neural-inspired encoding establishes an alternative paradigm in hyperefficient, embodied sensing of spatiotemporal data and sheds light on principles of biological sensing for agile flight control.
  • 关键词:sparse sensing ; neural encoding ; sensory arrays ; sparse optimization ; insect flight control
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有