首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Comparison of Intelligent Methods of SOC Estimation for Battery of Photovoltaic System
  • 作者:Tae-Hyun Cho ; Hye-Rin Hwang ; Jong-Hyun Lee
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2018
  • 卷号:9
  • 期号:9
  • DOI:10.14569/IJACSA.2018.090907
  • 出版社:Science and Information Society (SAI)
  • 摘要:It is essential to estimate the state of charge (SOC) of lead-acid batteries to improve the stability and reliability of photovoltaic systems. In this paper, we propose SOC estimation methods for a lead-acid battery using a feed-forward neural network (FFNN) and a recurrent neural network (RNN) with a gradient descent (GD), a levenberg–marquardt (LM), and a scaled conjugate gradient (SCG). Additionally, an adaptive neuro-fuzzy inference system (ANFIS) with a hybrid method was proposed. The voltage and current are used as input data of neural networks to estimate the battery SOC. Experimental results show that the RNN with LM has the best performance for the mean squared error, but the ANFIS has the highest convergence speed.
  • 关键词:Lead-acid battery; SOC; FFNN; RNN; ANFIS; gradient descent; levenberg-marquardt; scaled conjugate gradient
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有