首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Deep Learning based Object Distance Measurement Method for Binocular Stereo Vision Blind Area
  • 作者:Jiaxu Zhang ; Shaolin Hu ; Haoqiang Shi
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2018
  • 卷号:9
  • 期号:9
  • DOI:10.14569/IJACSA.2018.090977
  • 出版社:Science and Information Society (SAI)
  • 摘要:Visual field occlusion is one of the causes of urban traffic accidents in the process of reversing. In order to meet the requirements of vehicle safety and intelligence, a method of target distance measurement based on deep learning and binocular vision is proposed. The method first establishes binocular stereo vision model and calibrates intrinsic extrinsic and extrinsic parameters, uses Faster R-CNN algorithm to identify and locate obstacle objects in the image, then substitutes the obtained matching points into a calibrated binocular stereo model for spatial coordinates of the target object. Finally, the obstacle distance is calculated by the formula. In different positions, take pictures of obstacles from different angles to conduct physical tests. Experimental results show that this method can effectively achieve obstacle object identification and positioning, and improve the adverse effect of visual field blindness on driving safety.
  • 关键词:deep learning; computer vision; binocular stereo vision; intelligent transportation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有