首页    期刊浏览 2025年07月28日 星期一
登录注册

文章基本信息

  • 标题:Diagonal Asymptotics for Symmetric Rational Functions via ACSV
  • 作者:Yuliy Baryshnikov ; Stephen Melczer ; Robin Pemantle
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:110
  • 页码:12:1-12:15
  • DOI:10.4230/LIPIcs.AofA.2018.12
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider asymptotics of power series coefficients of rational functions of the form 1/Q where Q is a symmetric multilinear polynomial. We review a number of such cases from the literature, chiefly concerned either with positivity of coefficients or diagonal asymptotics. We then analyze coefficient asymptotics using ACSV (Analytic Combinatorics in Several Variables) methods. While ACSV sometimes requires considerable overhead and geometric computation, in the case of symmetric multilinear rational functions there are some reductions that streamline the analysis. Our results include diagonal asymptotics across entire classes of functions, for example the general 3-variable case and the Gillis-Reznick-Zeilberger (GRZ) case, where the denominator in terms of elementary symmetric functions is 1 - e_1 + c e_d in any number d of variables. The ACSV analysis also explains a discontinuous drop in exponential growth rate for the GRZ class at the parameter value c = (d-1)^{d-1}, previously observed for d=4 only by separately computing diagonal recurrences for critical and noncritical values of c.
  • 关键词:Analytic combinatorics; generating function; coefficient; lacuna; positivity; Morse theory; D-finite; smooth point
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有