首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Revisiting Frequency Moment Estimation in Random Order Streams
  • 作者:Vladimir Braverman ; Emanuele Viola ; David P. Woodruff
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:107
  • 页码:25:1-25:14
  • DOI:10.4230/LIPIcs.ICALP.2018.25
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We revisit one of the classic problems in the data stream literature, namely, that of estimating the frequency moments F_p for 0 < p < 2 of an underlying n-dimensional vector presented as a sequence of additive updates in a stream. It is well-known that using p-stable distributions one can approximate any of these moments up to a multiplicative (1+epsilon)-factor using O(epsilon^{-2} log n) bits of space, and this space bound is optimal up to a constant factor in the turnstile streaming model. We show that surprisingly, if one instead considers the popular random-order model of insertion-only streams, in which the updates to the underlying vector arrive in a random order, then one can beat this space bound and achieve O~(epsilon^{-2} + log n) bits of space, where the O~ hides poly(log(1/epsilon) + log log n) factors. If epsilon^{-2} ~~ log n, this represents a roughly quadratic improvement in the space achievable in turnstile streams. Our algorithm is in fact deterministic, and we show our space bound is optimal up to poly(log(1/epsilon) + log log n) factors for deterministic algorithms in the random order model. We also obtain a similar improvement in space for p = 2 whenever F_2 >~ log n * F_1.
  • 关键词:Data Stream; Frequency Moments; Random Order; Space Complexity; Insertion Only Stream
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有