首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Additive Non-Approximability of Chromatic Number in Proper Minor-Closed Classes
  • 作者:Zdenek Dvor{\'a}k ; Ken-ichi Kawarabayashi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:107
  • 页码:47:1-47:12
  • DOI:10.4230/LIPIcs.ICALP.2018.47
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Robin Thomas asked whether for every proper minor-closed class G, there exists a polynomial-time algorithm approximating the chromatic number of graphs from G up to a constant additive error independent on the class G. We show this is not the case: unless P=NP, for every integer k >= 1, there is no polynomial-time algorithm to color a K_{4k+1}-minor-free graph G using at most chi(G)+k-1 colors. More generally, for every k >= 1 and 1 <=beta <=4/3, there is no polynomial-time algorithm to color a K_{4k+1}-minor-free graph G using less than beta chi(G)+(4-3 beta)k colors. As far as we know, this is the first non-trivial non-approximability result regarding the chromatic number in proper minor-closed classes. We also give somewhat weaker non-approximability bound for K_{4k+1}-minor-free graphs with no cliques of size 4. On the positive side, we present an additive approximation algorithm whose error depends on the apex number of the forbidden minor, and an algorithm with additive error 6 under the additional assumption that the graph has no 4-cycles.
  • 关键词:non-approximability; chromatic number; minor-closed classes
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有