首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Semicomputable Geometry
  • 作者:Mathieu Hoyrup ; Diego Nava Saucedo ; Don M. Stull
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:107
  • 页码:129:1-129:13
  • DOI:10.4230/LIPIcs.ICALP.2018.129
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Computability and semicomputability of compact subsets of the Euclidean spaces are important notions, that have been investigated for many classes of sets including fractals (Julia sets, Mandelbrot set) and objects with geometrical or topological constraints (embedding of a sphere). In this paper we investigate one of the simplest classes, namely the filled triangles in the plane. We study the properties of the parameters of semicomputable triangles, such as the coordinates of their vertices. This problem is surprisingly rich. We introduce and develop a notion of semicomputability of points of the plane which is a generalization in dimension 2 of the left-c.e. and right-c.e. numbers. We relate this notion to Solovay reducibility. We show that semicomputable triangles admit no finite parametrization, for some notion of parametrization.
  • 关键词:Computable set; Semicomputable set; Solovay reducibility; Left-ce real; Genericity
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有